Math 4200
Monday October 5
2.4 Winding number (aka index), and Cauchy's integral formula

Announcements:



2.4 This section is about the magic fact that if a piecewise C' closed contour Y is given;
and if f(z) is analytic in an open simply-connected domain 4 containing v, and if z, is

"inside" v, then f/(z) can be computed with an appropriate contour integral around .

This is the Cauchy Integral Formula and is the basis for many amazing facts about
analytic functions, and corollaries important in diverse pure and applied mathematics
applications.

Step 1 What does it mean for z, to be "inside" y ?
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Def 1If v is a continuous closed path in C, y: [a, b]—C, y(a) =7(b) =P, and if
zo & Y([a, b]) then the winding number ofy about z,, also called the index of

Y relative to z;, is how many times Y winds around z, in the counterclockwise direction.

We write (y ; ZO) for this integer.

This number is usually easy to compute if you can see the image curve 7.

Examples: deduce the winding numbers of the various closed curves above, about the
indicated points.

Def We say that z is inside vy iff I(y ; ZO) * 0.



Lemma / (y ; ZO) is a well defined integer for any continuous closed curve y with

zo € Y([a, b]).

proof:

Y([a, b]) is compact and contains its limit points, so z, & Y([a, b]) means 7y stays a

uniform distance away from z,, |z, — y(t)| > &> 0.

Claim (1): Make a choice 6, for the argument of y(a) — z, (determined up to a

multiple of 2 ). Then there is a unique way to extend 6=10(¢) = arg(y(t) — zo)as a
continuous function on the interval [a, b], i.e. so that

V(1) —z9=| Y(1) — 2| ° Ve [a, b].

proof: Consider the open half plane half plane indicated above:
T

T
0,-— <arg(z—z) <8, + )

2
Aslong as Y([a, t]) & H, there is a unique way to define

0(t) = arg(y(t) — ZO)

T T
continously, namely by requiring 6, — ) <0(1r) <6, + o 0(¢).) Let ¢; be the first

t > a with

0, — %Zarg(y(tl) —zo) or 8, + %Zarg(y(l‘l) —ZO).



Then extend 0(¢) for # > ¢; using the neighbor halfplane

T T
H2={z eC arg(y(tl) —ZO) Y <arg(z—z) < arg(y(tl) —ZO) + o
Continue inductively, finding #,, 5 ,.... and half planes Hs, H, , .... if necessary.

Because y(¢) is uniformly continuous and because |y(t) — Zo| > r, this process
terminates after a finite number of steps with

0(¢) = arg(y(t) — ZO)
defined and continuous on the entire interval [a, b], and so that

Y1) = z0= | Y1) — 2| ¢ 7.

(2) Define I(y;z) = %( 0(b) —0(a)). Since y(a)=7y(b) and 6(b) and
T

O(a) are argument choices of y(a) — z,, the index is an integer. Any other continuous
construction of the argument function, say 6, (z) would have

0,(¢) —0(2) =2mk(z), k(¢) €Z.
Since k(t) is a difference of continuous functions it is continuous on [a, b] and since it
only takes on integer values, i.e. 6,(¢) =0(¢) + 2 7 k, it must be constant. Thus

1
g( 0,(b) —91(0))=ﬁ( 0(b) —6(a))

so I(y;z) is well defined.



Theorem If v, z, are as in the preceding discussion, and if 7 is also piecewise C', then
index can be computed with a contour integral:

I(y;zo)= 1 J 1 dz.

2Ti v zZ—Z
motivation: locally, in polar coordinates, z=z, + r €' 0
z=zy+r ¢ 0

dz=(dr)e'® +re' % do
i0 i0.
_ dz__ _ (dr)e —I—.re ido :ﬂ_'_ i de.
zZ—Z reze r
proof: Let a < s < b, 0, 0(1), Hy, t1, Hy, t, ... as in the earlier discussion. If vy is Cl,

then for a < s < ¢; and using polar coordinates in the intial half plane H,

Y(£) =zy + r(1)e' ¥
S S . .
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- [ln(r(s) —In(r(a)) + i(06(s)-6(a))).
Continue for #; < s < t,, ... and adding more subintervals if 7y is only piecewise cl.
Using telescoping series, deduce that for all a < s < b,
S
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Q.E.D.



Examples _
a) Show that for yn(t) =zy +re . 0<t<2nmne&Z that the winding number of
n agrees the contour integral formula

1 1
1(v;2) = Z“il et

b) Let 4 be an open connected domain with boundary a p.w. C! simple closed curve vy
oriented counterclockwise, z; € 4. Show

via contour replacement.

Remark If 7 is any simple closed curve in C \ {0} then it turns out that 7y is
homotopic as closed curves to one of the v, 's in part (a). And so one could use the

deformation theorem to deduce its index. This homotopy fact is typically proven in

courses on algebraic topology where one studies the fundamental group of various
spaces, including C \ {0} and the unit circle.



The Cauchy Integral Formula (which we will see is amazing in its consequences):

Let A = C be open and connected , f: A4 — C analytic;
v:[a, b]— C a piecewise C' closed contour in 4, zo & Y([a, b]).
Let y be contractible in A, i.e. homotopic to a point as closed curves in 4. (If 4 is

simply connected this is automatic.)
Then

1 J /(2) dz=f(zo)l(y;zo).
v

(So, if z; is inside y then f(z) is determined and computable just from the values of

f along 7y !!!)
proof: Let
1 -fa)
g(z) = 2T
f'(zo) z=1z,

1) g isanalyticin 4 \ {z,} and continuous at z,.

2) So the modified rectangle lemma holds in any subdisk of 4 containing z, (see last
Friday notes) and the local antiderivative theorem holds for g(z).

3) So we may apply the homotopy lemma with the contractible curve diagram below,
because it only depends on local antiderivatives and a subdivision argument in the
domain and range of the homotopy.

1)

Y

to deduce Jg(z) dz=0.

v
4) Since z, is not on the countour defined by v,

(z) =1 (= z
O=Jg(z)dz=Jf /(%) dz=JLdz—f(zo)2nil(y;zo)
v v

Z_ZO Z_ZO

Q.E.D.



Remark: If yisa counter-clockwise simple closed curve bounding a subdomain B in
A, with z; inside vy, then we already checked that 7(y;z)=1. So in this case the CIF

reads
1 z
f(z) = J /(z) dz.

2wi) Z—Z
lY 0

One can prove this important special case of the Cauchy integral formula with contour

replacement and a limiting argument, assuming f is C' in addition to being analytic.
This 1s a post-exam homework problem.




From Friday:

Homotopy Lemma Let A & C be open and connected. Let f: 4 — C be analytic. Let

S={(5,#)]0<s<1,0<¢r<1} and
oS
denote the unit square and its boundary, oriented counterclockwise. Let H:S— A4 be

continuous, with T := H(8 S) a piecewise C! contour. Then

Jf(z)dz=0.
T
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proof of the homotopy lemma: Subdivide S into n? subsquares of side lengths n I
The dots in the diagram on the left indicate their vertices. number the squares as you
would a matrix, and let S, j be a typical subsquare, with z, j be the image under the

homotopy of its lower left corner. Since H is continuous and S is compact, the image
H(S) € A is compact. Write

H(3S)=T
H(8 S8 ;)=T
Replace any of the four subarcs of each T’ ; which are not C! with constant speed line
segment paths between the image vertices.

By interior cancellation,

Jf(z) dz= J f(z2) dz.
k,j
r ij
Note:
1) H(S) is compact, H(S) S A open, so by the Positive Distance Lemma you're
proving in this week's homework

de>0suchthat V z€ H(S), D(z¢) S 4.
2) H is continuous on S so H is uniformly continuous. Thus for € as in (1),
38> 0suchthat || (s,¢) — (5, £)|| <d8=|H(s, 1) —H(S, t)| <e.

3) If n is large enough so that the diagonal length of the subsquares is less than 9, then
each

4) By the local antidifferentiation theorem in D(zk Iz 8), each

Jf(z)dz=0=>ff(2)dz=0. Q.E.D.I!!
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